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Abstract: Recently, so many studies were carried out
about interaction between magnetic field on the band of
0-100kHz and human biology. Many of them are
adressed to the canser risk of children. In this paper,
certain band fields to the ellipsoid human models were
investigated. As ellipsoid human models, average man,
average woman, average endomorphic (fat) man, 10-
year-old-child, 5-year-old-child, and 1-year-old-child
models were selected. Investigations were made for
different situations and orientations. Field strenghts
induced by the external 10 mG (1µµµµT) field were
estimated for different variations. In the situation of
external field was in front of the body, the maximum
value was faund. When the external field was positioned
parallel to major axis, the minimum value was
obtained. For example, for 10-year-old child model, at
10 kHz, when the magnetic field was parallel to lenght
axis induced electrical field, (Erms) was 1.923 mV/m.
When the magnetic field was parallel to the
intermediate axis of body, its value was 2.176 mV/m
and it was parallel to the minor axis of body, optained
value was 3.93 mV/m.

Key words: Electromagnetic field dosimetry, ellipsoidal
models, exposure calculation.

I.INTRODUCTION

A number of epidemiological studies have reported
positive associations between childhood cancer, leukemia,
and the configuration of nearby residential electric power
lines, often referred to as the wire code[1,2]. Several
reports on this subject have appeared since Wertheimer and
Leeper (1979) an association between childhood cancer
mortality and proximity of homes to power distribution
lines with what the researcher classified as high current
configuration. To date there have been more than a dosen
studies on childhood cancer and exposure to power
frequency magnetic fields in the home produced by nearby
power lines[1,3,4,5,6,7]. The fact that results for leukemia
based on proximity of homes to power lines are relatively
consistent led the U.S. National Academy of Sciences
Committee to conclude that children living near power
lines appear to be at increased risk of leukemia[8].

Over the years there also has been substantial interest in
whether there is an association between magnetic field
exposure and childhood brain cancer, the second most
frequent type of cancer found in children. The recent
studies completed after the NAS Committee’s review fail
to provide support for an association between brain cancer
and children’s exposure to magnetic fields, whether the
source was power lines or electric blankets or whether
magnetic fields were estimated by calculations or by wire
codes[5,9,10]. The most intensively investigated
environmental factor has been the time weighted average
magnetic fields associated with electric currents on power
lines and grounding systems. A large U.S. Case control
Studies to test wheather childhood acute lymphoblstic
leukemia is associated with exposure to 60-Hz magnetic
field was published by Linet et. al.,[11].

According to [12], the power lines was the most important
source of exposure when the magnetic field due to line was
greater than about 0.2 micro T. The result of the study
indicated that children who lived close to a power line had
a higher magnetic field exposure than other children.

This study analyzes whole body exposure of
homogeneous adults and children models-shaped elipsoids
to uniform sinusoidal electric and magnetic fields with
frequency up to 100kHz.

This frequency range are practical upper limits for
dosimetric concern because of the time constants (>10µs)
inherent to biological signaling within cell membranes[2].

Although this studies of whole body exposure to
uniform electric and magnetic fields yields clear results,
there may be limits to its applicability, because at least
some sources of transient electric and magnetic fields are
localized and will produce only partial-body exposures.

II. COUPLING MECHANISMS BETWEEN FIELDS
AND THE BODY

The interaction of time-varying electric fields with the
human body results in the flow of electric charge (electric
current, the polarization of bound charge (formation of
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electric dipoles), and the reorientation of electric dipoles
already present in tissue.  The relative magnitudes of these
different effects depend on the electrical properties of the
body that is, electrical conductivity and permittivity.
Electrical conductivity and permittivity vary with the type
of body tissue and also depend on the frequency of the
applied field. External electric fields to the body induce a
surface charge on the body; this results in induced currents
in the body, the distribution of which depends on exposure
conditions, on the size and shape of the body, and on the
body's position in the field.

The physical interaction of time-varying magnetic
fields with the human body results in induced electric fields
and circulating electric currents. The magnitudes  of the
induced field and the current density are proportional to the
radius of the loop, the electrical conductivity of the tissue,
and the rate of change and magnitude of the magnetic flux
density. For a given magnitude and frequency of magnetic
field, the strongest electric fields are induced where the
loop dimensions are the greatest. The exact path and
magnitude of the resulting current induced in any part of
the body will depend on the electrical conductivity of the
tissue.

III. ELLIPSIODAL MODELS OF ADULTS AND
CHILDREN

The surface of an ellipsoid is defined by the equation
(1),

(x/a)2+(x/b)2+(x/c)2=1 (1)

Where x,y, and z are rectangular coordinates, and the size
and shape of the ellipsoid are determined by the three
parameters a, b, and c. ( In this study, c≤b≤a).

A basic ellipoid is shown in Figure.1 Where 2a defines
the lenght of the mojor (i.e., longest) axis of the body, 2b
defines the lenght of the intermediate axis, and 2c defines
the lenght of minor axis. When using an ellipsoid model to
a person, 2a defines the person’s height, 2b defines the
person’s width (measured from hip to hip), and 2c defines
the person’s depth (measured approximately from the
surface of the abdomen to buttocks). Table.1 list the
ellipsoid models and parameters of adults and children
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Figure.1 Ellipsoid models representation; a) Magnetic field
is aligned with the major axis of the body, b) Magnetic
field is aligned with the intermediate axis of the body

TABLE.I
ELLIPSOID PARAMETERS

FOR SELECTED HUMAN MODELS[13]
Selected Models a b c
Average Man 0.875 0.195 0.098
Average Women( 0.805 0.2 0.091
Average Endomorphic (fat)man 0.88 0.225 0.17
10-Year-Old- Child 0.69 0.143 0.078
5-Year-Old- Child 0.56 0.12 0.069
1-Year-Old- Child 0.37 0.095 0.068

IV. MATHEMATICAL RELATIONS FOR COUPLING
OF UNIFORM MAGNETIC FIELD TO ELLIPSOID

Consider a magnetic field, B0, aligned parellel to the x
axis. It can be shown that the induced electric field is in the
y-z plane and is everywhere tangent to the ellipse
(y/b)2+(z/c)2=η2, where 1 ≥ η ≥0 [14,15]. The strenght of
the induced field E is [14]

2424
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The values of Emax and Erms induced inside the ellipsoid are;
[2]

1) B0 is aligned with a (x) axis:
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2) B0 is aligned with b (y) axis:
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3) B0 is aligned with c (z) axis:

22

2

0max ba
baBE

+
= ω ,

22
0

5 ba
abBErms
+

= ω
(5)

V. INDUCED FIELDS INSIDE THE SELECTED
HUMAN ELLIPSOIDAL MODELS

Table.II present calculated induced electric fields when the
ellipsoidal models are with exposed 10 mG magneric
fields. Data are given for each of the three orientations of
external field relative to the axes of ellipsoidal models.
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TABLE.II
VOLUME-RMS (Erms) ELECTRIC FIELD STRENGHTS INDUCED

IN ELLIPSODAL MODELS OF HUMAN BY EXTERNAL 10 mG MAGNETIC FIELD
Induced Electric Field (mV/m)

Selected Models
B0 is aligned with a axis (Bo//a) B0 is aligned with b axis (Bo//b) B0 is aligned with c axis (Bo//c)

Exposure Frequency
F, (kHz) 0.1 1 10 100 0.1 1 10 100 0.1 1 10 100

Average Man 0.0246 0.246 2.46 24.6 0.0273 0.273 2.735 27.35 0.0534 0.534 5.345 53.45

Av. Women 0.0232 0.232 2.326 23.263 0.0254 0.254 2.54 25.4 0.0545 0.545 5.451 54.51
Av. Endomorphic
(fat)man 0.0381 0.381 3.809 38.094 0.0469 0.468 4.687 46.88 0.0612 0.612 6.122 61.22
10-Year-Old-
Child 0.019 0.192 1.923 19.232 0.0218 0.217 2.176 21.77 0.0393 0.393 3.932 39.33
5-Year-Old-
 Child 0.0168 0.168 1.68 16.8 0.019 0.192 1.923 19.23 0.033 0.33 3.3 33
1-Year-Old-
Child 0.0155 0.155 1.55 15.5 0.0188 0.187 1.878 18.78 0.0258 0.258 2.584 25.84
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Figure.2 Comparison of exposure to field orientation for average man
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Figure. 3 Induced electric field for selected ellipsoidal
human models, f=0.1kHz (External magnetic field aligned
with the long axis of the body)

Some value of exposure can be found from Figure.2 It’s
easy to compare the exposures for field orientations. At
exposure frequency, induced electric field varies with
releated to field orientation and models. In Figure.3, for fat
man, Emax is shown the greates value. But it varies from
model to model. The size and shape of the body is the
major parameter.

VI. CONCLUTIONS

In this paper, for ellipsoidal body models, in the situation
of 10 mG (1µT) exposure, induced electric fields have been
analyzed. Results vary with the orientation of field or the
size of body. When the external magnetic field is applied as
paralle to the long axis of body (Bo//a, i.e., aligned with the
long axis of the body), induced field to the body is less then
other field-body configurations (Bo//b and Bo//c). The
greatest induced field strenght is aligned with lenght of the
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minor axis of body. As a result, induced field strenght may
vary with shape and size of the body, exposure frequency,
and the orientation of the body relative to the field.
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